Optimized and far-red-emitting variants of fluorescent protein eqFP611.

نویسندگان

  • Simone Kredel
  • Karin Nienhaus
  • Franz Oswald
  • Michael Wolff
  • Sergey Ivanchenko
  • Florian Cymer
  • Andreas Jeromin
  • Francois J Michel
  • Klaus-Dieter Spindler
  • Ralf Heilker
  • G Ulrich Nienhaus
  • Jörg Wiedenmann
چکیده

Fluorescent proteins (FPs) emitting in the far-red region of the spectrum are highly advantageous for whole-body imaging applications because scattering and absorption of long-wavelength light is markedly reduced in tissue. We characterized variants of the red fluorescent protein eqFP611 with bright fluorescence emission shifted up to 639 nm. The additional red shift is caused by a trans-cis isomerization of the chromophore. The equilibrium between the trans and cis conformations is strongly influenced by amino acid residues 143 and 158. Pseudo monomeric tags were obtained by further genetic engineering. For the red chromophores of eqFP611 variants, molar extinction coefficients of up to approximately 150,000 were determined by an approach that is not affected by the presence of molecules with nonfunctional red chromophores. The bright fluorescence makes the red-shifted eqFP611 variants promising lead structures for the development of near-infrared fluorescent markers. The red fluorescent proteins performed well in cell biological applications, including two-photon imaging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mRuby, a Bright Monomeric Red Fluorescent Protein for Labeling of Subcellular Structures

A monomeric variant of the red fluorescent protein eqFP611, mRuby, is described. With excitation and emission maxima at 558 nm and 605 nm, respectively, and a large Stokes shift of 47 nm, mRuby appears particularly useful for imaging applications. The protein shows an exceptional resistance to denaturation at pH extremes. Moreover, mRuby is about ten-fold brighter compared to EGFP when being ta...

متن کامل

Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging.

The advancement of far-red emitting variants of the green fluorescent protein (GFP) is crucially important for imaging live cells, tissues and organisms. Despite notable efforts, far-red marker proteins still need further optimization to match the performance of their green counterparts. Here we present mGarnet, a robust monomeric marker protein with far-red fluorescence peaking at 670 nm. Than...

متن کامل

Advances in fluorescent protein technology.

Current fluorescent protein (FP) development strategies are focused on fine-tuning the photophysical properties of blue to yellow variants derived from the Aequorea victoria jellyfish green fluorescent protein (GFP) and on the development of monomeric FPs from other organisms that emit in the yellow-orange to far-red regions of the visible light spectrum. Progress toward these goals has been su...

متن کامل

Photoactivation turns green fluorescent protein red

In the few years since its gene was first cloned, the Aequorea victoria green fluorescent protein (GFP) has become a powerful tool in cell biology, functioning as a marker for gene expression, protein localization and protein dynamics in living cells. GFP variants with improved fluorescence intensity and altered spectral characteristics have been identified, but additional GFP variants are stil...

متن کامل

Sensitive Detection of Gene Expression in Mycobacteria under Replicating and Non-Replicating Conditions Using Optimized Far-Red Reporters

Fluorescent reporter proteins have proven useful for imaging techniques in many organisms. We constructed optimized expression systems for several fluorescent proteins from the far-red region of the spectrum and analyzed their utility in several mycobacterial species. Plasmids expressing variants of the Discosoma Red fluorescent protein (DsRed) from the Mycobacterium bovis hsp60 promoter were u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemistry & biology

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2008